Polynômes

Exercice 1. Familles libres de polynômes

Soit $a, b \in \mathbb{K}$ avec $a \neq b$. On pose $P_k = (X - a)^k (X - b)^{n-k}$. Démontrer que la famille (P_0, \dots, P_n) est libre.

Exercice 2. Formule de Van der Monde

Soit $n \in \mathbb{N}^*$. Pour $k \in [0, n]$ on pose $P_k = X^k (1 - X)^{n-k}$. Démontrer que $\mathcal{B} = (P_0, \dots, P_n)$ est une base de $\mathbb{R}_n[X]$. Calculer les composantes dans \mathcal{B} de $\frac{\mathrm{d}^n}{\mathrm{d}x^n} (X^n (1 - X)^n)$. En déduire la valeur de $\sum_{k=0}^n \binom{n}{k}^2$.

Exercice 3. Familles libres de polynômes

Soient $U, V \in \mathbb{K}[X]$ non constants. On pose $P_k = U^k V^{n-k}$. Montrer que (P_0, \dots, P_n) est libre ...

- 1) lorsque $U \wedge V = 1$.
- **2)** lorsque (U, V) est libre.

Exercice 4. Ensi PC 1999

Déterminer les polyômes $P \in \mathbb{R}_{2n-1}(X)$ tels que P(X) + 1 est multiple de $(X-1)^n$ et P(X) - 1 est multiple de $(X+1)^n$.

Exercice 5. Opérateur différence

Soit \mathbb{K} un corps de caractéristique nulle. On note $U_p = \frac{X(X-1)\dots(X-p+1)}{p!}$ pour $p \in \mathbb{N}$, et

$$\Delta: \left\{ \begin{matrix} \mathbb{K}[X] & \longrightarrow & \mathbb{K}[X] \\ P & \longmapsto & P(X+1) - P(X). \end{matrix} \right.$$
1) Démontrer que la famille $(U_p)_{p \in \mathbb{N}}$ est une base de $\mathbb{K}[X]$.

- **2)** Calculer $\Delta^n(U_n)$.
- 3) En déduire : $\forall P \in \mathbb{K}_n[X], P = P(0) + (\Delta P)(0)U_1 + (\Delta^2 P)(0)U_2 + \ldots + (\Delta^n P)(0)U_n$.
- 4) Soit $P \in \mathbb{K}[X]$. Démontrer que $P(\mathbb{Z}) \subset \mathbb{Z}$ si et seulement si les coordonnées de P dans la base (U_p) sont entières (on considère que $\mathbb{Z} \subset \mathbb{K}$ vu $\operatorname{car}(\mathbb{K}) = 0$).
- 5) Soit $f: \mathbb{Z} \to \mathbb{Z}$ une fonction quelconque. Démontrer que f est polynomiale si et seulement s'il existe $n \in \mathbb{N} \text{ tq } \Delta^n(f) = 0.$

Exercice 6. Liberté de $P(X), \ldots, P(X+n)$

Soit \mathbb{K} un corps de caractéristique nulle et $P \in \mathbb{K}[X]$ de degré n.

Démontrer que la famille $(P(X), P(X+1), \dots, P(X+n))$ est une base de $\mathbb{K}_n[X]$. On pourra utiliser l'opérateur Δ de l'exercice 5.

Exercice 7. $(X+z_0)^n, \ldots, (X+z_k)^n$, Centrale MP 2003

Soit $k \in \mathbb{N}^*$ et z_0, \ldots, z_k des complexes. Soient les polynômes $P_0 = (X + z_0)^n, \ldots, P_k = (X + z_k)^n$. Donner une condition nécessaire et suffisante pour que (P_0, \ldots, P_k) soit une base de $\mathbb{C}_n[X]$.

Exercice 8. $P-X \mid P \circ P - X$

- 1) Soit $P \in \mathbb{K}[X]$. Démontrer que P X divise $P \circ P X$.
- **2)** Résoudre dans \mathbb{C} : $(z^2 + 3z + 1)^2 + 3z^2 + 8z + 4 = 0$.

Exercice 9. $P \mapsto P(X+1) + P(X-1) - 2P(X)$ Soit \mathbb{K} un corps de caractéristique nulle et $\Phi : \left\{ \begin{array}{ccc} \mathbb{K}[X] & \longrightarrow & \mathbb{K}[X] \\ P & \longmapsto & P(X+1) + P(X-1) - 2P(X). \end{array} \right.$

- 1) Chercher $\deg(\Phi(P))$ en fonction de $\deg P$.
- 2) En déduire $\operatorname{Ker} \Phi$ et $\operatorname{Im} \Phi$.
- 3) Montrer que : $\forall Q \in \mathbb{K}[X], \exists ! P \in \mathbb{K}[X] \text{ tq } \Phi(P) = Q \text{ et } P(0) = P'(0) = 0.$

Exercice 10. $P \mapsto (X - a)(P'(X) + P'(a)) + P(X) - P(a)$

Soit \mathbb{K} un corps de caractéristique nulle, $a \in \mathbb{K}$ et

$$\Phi: \begin{cases} \mathbb{K}_n[X] & \longrightarrow & \mathbb{K}_n[X] \\ P & \longmapsto & (X-a)(P'(X)+P'(a))+P(X)-P(a). \end{cases}$$

Chercher $\operatorname{Ker} \Phi$ et $\operatorname{Im} \Phi$.

Exercice 11. $A^3 + B = C^3 + D$

Soient
$$A, B, C, D \in \mathbb{R}[X]$$
 tels que :
$$\begin{cases} \deg A = \deg C = m \\ \deg B < 2m, \ \deg D < 2m \end{cases}$$

Montrer que A = C et B = D. Trouver un contre-exemple avec des polynômes à coefficients complexes.

Exercice 12. $P(n) \mid P(n+P(n))$

Soit $P \in \mathbb{Z}[X]$, $n \in \mathbb{Z}$, et p = P(n). Montrer que p divise P(n+p).

Exercise 13. $P(a/b) = 0 \Rightarrow a - kb$ divise P(k)

Soit $P \in \mathbb{Z}[X]$ et $a, b \in \mathbb{Z}^*$ premiers entre eux tels queP(a/b) = 0.

- 1) Montrer que a divise le coefficient constant de P.
- **2)** Montrer que pour tout $k \in \mathbb{Z}$, a kb divise P(k).

Exercice 14. Automorphismes de $\mathbb{K}[X]$

Pour
$$A \in \mathbb{K}[X]$$
 on note $\Phi_A : \begin{cases} \mathbb{K}[X] & \longrightarrow & \mathbb{K}[X] \\ P & \longmapsto & P \circ A \end{cases}$

1) Démontrer que les applications Φ_A sont les seuls endomorphismes d'algèbre de $\mathbb{K}[X]$.

- 2) A quelle condition Φ_A est-il un isomorphisme?

Exercice 15. Sous anneau non principal de $\mathbb{K}[X]$

Soit $A = \{P \in \mathbb{K}[X] \text{ dont le coefficient de } X \text{ est nul}\}$. Démontrer que A est un sous anneau non principal $de \mathbb{K}[X].$

Exercice 16. Équation $P^2 + Q^2 = (X^2 + 1)^2$

Trouver $P, Q \in \mathbb{R}[X]$ premiers entre eux tels que $P^2 + Q^2 = (X^2 + 1)^2$.

Exercice 17. Équation $X(X-1)P' + P^2 - (2X+1)P + 2X = 0$

Trouver tous les polynômes $P \in \mathbb{K}[X]$ tels que : $X(X-1)P' + P^2 - (2X+1)P + 2X = 0$.

Exercice 18. $P(X) + P(X+1) = 2X^n$

Soit K un corps de caractéristique nulle.

- 1) Montrer qu'il existe un unique polynôme $P_n \in \mathbb{K}[X]$ tel que $P_n(X) + P_n(X+1) = 2X^n$.
- 2) Chercher une relation de récurrence entre P'_n et P_{n-1} .
- 3) Décomposer $P_n(X+1)$ sur la base $(P_k)_{k\in\mathbb{N}}$.
- **4)** Démontrer que $P_n(1-X) = (-1)^n P_n(X)$.

Exercice 19. $(1-X)^n P + X^n Q = 1$

- 1) Démontrer qu'il existe $P, Q \in \mathbb{K}_{n-1}[X]$ uniques tels que $(1-X)^n P + X^n Q = 1$.
- 2) Montrer que Q = P(1 X).
- 3) Montrer que : $\exists \lambda \in \mathbb{K}$ tel que $(1 X)P' nP = \lambda X^{n-1}$.
- 4) En déduire P lorsque $car(\mathbb{K}) = 0$.

Exercice 20. Endomorphismes de $\mathbb{K}[X]$ qui commutent avec la dérivation

Soit \mathbb{K} un corps de caractéristique nulle et $\Phi \in \mathcal{L}(\mathbb{K}[X])$ commutant avec la dérivation, c'est à dire :

$$\forall P \in \mathbb{K}[X], \ \Phi(P') = \Phi(P)'.$$

- 1) Montrer qu'il existe un unique suite $(a_k)_{k\in\mathbb{N}}$ de scalaires tels que : $\forall P\in\mathbb{K}_n[X], \Phi(P)=\sum_{k=0}^n a_k P^{(k)}$.
- 2) Décomposer ainsi l'endomorphisme $\Phi: P \mapsto P(X+1)$.

Exercice 21. P est positif $\Rightarrow P + P' + P'' + \dots$ aussi

Soit $P \in \mathbb{R}[X]$ tel que : $\forall x \in \mathbb{R}, P(x) \ge 0$. Démontrer que : $\forall x \in \mathbb{R}, (P + P' + P'' + \ldots)(x) \ge 0$.

Exercise 22. $P(\tan \alpha) = Q(\frac{1}{\cos \alpha})$

Soit $P \in \mathbb{R}[X]$. Existe-t-il $Q \in \mathbb{R}[X]$ tel que $\forall \alpha \in]-\frac{\pi}{2}, \frac{\pi}{2}[, P(\tan \alpha) = Q(\frac{1}{\cos \alpha})]$?

Exercice 23. $X^n + 1/X^n = P_n(X + 1/X)$

1) Montrer que pour tout entier $n \in \mathbb{N}$ il existe un unique polynôme $P_n \in \mathbb{Z}[X]$ vérifiant :

$$\forall z \in \mathbb{C}^*, \ z^n + z^{-n} = P_n(z + z^{-1}).$$

- 2) Déterminer le degré, le coefficient dominant, et les racines de P_n .
- 3) Pour $P \in \mathbb{C}[X]$, on note \tilde{P} le polynôme tel que :

$$\forall z \in \mathbb{C}^*, \ P(z) + P(z^{-1}) = \tilde{P}(z + z^{-1}).$$

Étudier l'application $P \mapsto \tilde{P}$.

Exercice 24. Polytechnique MP* 2000

- 1) Donner un isomorphisme f entre \mathbb{C}^{n+1} et $\mathbb{C}_n[X]$. 2) Montrer que σ : $\begin{cases} \mathbb{C}^{n+1} & \longrightarrow \mathbb{C}^{n+1} \\ (a_0, \dots, a_n) & \longmapsto (a_n, a_0, \dots, a_{n-1}) \end{cases}$ est linéaire. 3) Si $P, Q \in \mathbb{C}[X]$, on définit le produit \overline{PQ} comme le reste de la division euclidienne de PQ par $X^{n+1}-1$. Montrer que l'application induite par σ sur $\mathbb{C}_n[X]$ (c'est-à-dire $f \circ \sigma \circ f^{-1}$) est l'application qui à Passocie \overline{XP} .
- 4) Soit F un sous-espace de \mathbb{C}^{n+1} stable par σ . Montrer qu'il existe un polynôme Q tel que $f(F) = {\overline{RQ}, R \in \mathbb{C}_n[X]}.$

Exercice 25. Centrale MP 2002

Déterminer tous les polynômes P tels que $P(\mathbb{C}) \subset \mathbb{R}$ puis tels que $P(\mathbb{Q}) \subset \mathbb{Q}$ et enfin tels que $P(\mathbb{Q}) = \mathbb{Q}$.

Exercice 26. Polytechnique MP 2002

Soient $x_1, \ldots, x_n \in \mathbb{C}$ distincts et $y_1, \ldots, y_n \in \mathbb{C}$. Trouver $E = \{P \in \mathbb{C}[X] \text{ tq } \forall i, P^{-1}(\{y_i\}) = \{x_i\}\}$.

Exercice 27. ENS Ulm MP 2002

Soit $S \subset \mathbb{N}$ fini et $P = \sum_{s \in S} a_s X^s \in \mathbb{C}[X]$.

- 1) On suppose que les a_s sont réels. Montrer que P a moins de racines strictement positives distinctes que la suite (a_s) n'a de changement de signe.
- 2) On suppose que P vérifie : $\forall s \in S, P(s) = 0$. Montrer que P est nul.

Exercice 28. $\sum_{k=1}^{100} \frac{k}{x-k} \geqslant 1$, Ens Ulm-Lyon-Cachan MP* 2003

Montrer que l'ensemble des solutions de l'inéquation $\sum_{k=1}^{100} \frac{k}{x-k} \geqslant 1$ est une réunion finie d'intervalles disjoints. Calculer la somme des longueurs de ces intervalles.

Exercice 29. Polynôme positif, Ens Ulm MP* 2003

Soit $P \in \mathbb{R}[X]$. Montrer:

 $(\forall x \ge 0, P(x) > 0) \Leftrightarrow (\exists \ell \in \mathbb{N} \text{ tq } (X+1)^{\ell} P(X) \text{ est à coefficients strictement positifs}).$

Exercice 30. Diviseurs premiers de la suite (P(n)), Ens ULM-Lyon-Cachan MP^* 2003

Soit $P \in \mathbb{Z}[X]$ non constant et E l'ensemble des diviseurs premiers d'au moins un P(n), $n \in \mathbb{Z}$. Montrer que E est infini.

Exercice 31. Centrale MP 2004

Soit $n \in \mathbb{N}^*$. Montrer l'existence de $P_n \in \mathbb{R}[X]$ tel que $1 + X - P_n^2$ est divisible par X^n .

Exercice 32. Polynômes à coefficients entiers, ULM-Lyon-Cachan MP* 2004

On donne un entier $n \ge 0$.

Montrer qu'il existe des polynômes P_0, \ldots, P_n dans $\mathbb{Z}_n[X]$ tels que $\forall i, j \in [0, n], \int_{t=0}^1 t^i P_j(t) dt = \delta_{ij}$.

Exercice 4.

$$P(X) = -1 + Q(X) \times (X - 1)^n \Leftrightarrow (X + 1)^n \mid Q(X)(X - 1)^n - 2 \Leftrightarrow X^n \mid Q(X - 1)(X - 2)^n - 2.$$

Soit $2 = A(X)(X-2)^n + X^n B(X)$ la division suivant les puissances croissantes de 2 par $(X-2)^n$ à l'ordre n. On obtient $X^n \mid Q(X-1) - A(X)$ soit $Q(X) = A(X+1) + X^n R(X)$ et $\deg(P) < 2n \Leftrightarrow R = 0$.

Calcul de A(X) par développement limité : $\frac{1}{(1+x)^n} = \sum_{k=0}^{n-1} {n \choose k} x^k + O(x^n)$ donc :

$$A(X) = \frac{(-1)^n}{2^{n-1}} \sum_{k=0}^{n-1} \binom{-n}{k} \frac{(-1)^k X^k}{2^k} = \sum_{k=0}^{n-1} \binom{n+k-1}{k} (-1)^n \frac{X^k}{2^{n+k-1}}$$

Exercice 6.

 $\operatorname{vect}(P(X), P(X+1), \dots, P(X+n))$ contient $P, \Delta P, \Delta^2 P, \dots, \Delta^n P$ donc $\mathbb{K}_n[X]$ d'après le thm des degrés

Exercice 7.

Déjà il est nécessaire que k=n. Supposant ceci réalisé, la matrice de (P_0,\ldots,P_k) dans la base canonique de $\mathbb{C}_n[X]$ est équivalente à la matrice de Vandermonde de z_0,\ldots,z_k . Donc une CNS est : k=n et z_0, \ldots, z_k sont distincts.

Exercice 8.

1)
$$P \circ P - X = (P \circ P - P) + (P - X)$$
.

2)
$$P(z) = z^2 + 3z + 1 \Rightarrow z = -1, -1, -2 \pm i$$
.

Exercice 10.

$$\operatorname{Ker} \Phi = \mathbb{K}_0[X], \operatorname{Im} \Phi = (X - a)\mathbb{K}_{n-1}[X].$$

Exercice 12.

Formule de Taylor : $\frac{P^{(k)}}{k!} \in \mathbb{Z}[X]$.

Exercice 13.

2) Appliquer le 1) à P(X + k).

Exercice 16.
$$\begin{cases} P = a(X^2 + 1) + bX + c \\ Q = a'(X^2 + 1) + b'X + c' \end{cases} \Rightarrow \begin{cases} P = \cos\theta(X^2 - 1) + 2X\sin\theta \\ Q = \sin\theta(X^2 - 1) - 2X\cos\theta. \end{cases}$$

$$P \wedge Q = 1 \text{ car } \pm i \text{ ne sont pas racines de } P \text{ et } Q.$$

Exercice 17.

$$\deg P < 2 \Rightarrow P \in \{1, X, X + 1\}.$$

Exercice 18.

- 1) isomorphisme $P \mapsto P(X) + P(X+1)$.
- **2)** $P'_n = nP_{n-1}$.
- 3) $P_n(X+1) = \sum_{k=0}^n \binom{n}{k} P_k$ (Taylor). 4) $Q_n(X) = P_n(1-X) \Rightarrow Q_n(X) + Q_n(X+1) = 2(-1)^n X^n$.

Exercice 19.

- 1) Bezout généralisé.
- 3) $((1-X)P'-nP)(1-X)^{n-1}+(nQ+XQ')X^{n-1}=0.$ 4) $P^{(k+1)}(0)=(n+k)P^{(k)}(0)\Rightarrow P=\sum_{k=0}^{n-1}\binom{n+k-1}{k}X^k.$

Exercice 21.

 $Q=P+P'+P''+\ldots: Q(x)\underset{x\to\infty}{\longrightarrow} +\infty$, donc il existe $\alpha\in\mathbb{R}$ tel que $Q(\alpha)$ soit minimal. Alors $0 = Q'(\alpha) = Q(\alpha) - P(\alpha) \Rightarrow \min Q \geqslant 0.$

Exercice 22.

oui ssi P est pair.

Exercice 23.

- 1) $P_0(u) = 2$, $P_1(u) = u$, $P_{n+1}(u) = uP_n(u) P_{n-1}(u)$. 2) $u_k = 2\cos(\frac{(2k+1)\pi}{2n})$, $k = 0, \dots, n-1$.

Exercice 24.

- 3) trivialement vrai ou trivialement faux selon le choix qu'on a fait en 1.
- 4) Soit $Q \in \mathbb{C}[X]$ et $F_Q = \{RQ, R \in \mathbb{C}_n[X]\}$. On a $F_Q = \{RQ, R \in \mathbb{C}[X]\}$ de manière évidente, donc F_Q est stable par la multiplication modulaire par X.

Soit réciproquement F un sev de $\mathbb{C}_n[X]$ stable par la multiplication modulaire par X. Si (P_1,\ldots,P_k) est une famille génératrice de F alors $Q = \operatorname{pgcd}(P_1, \dots, P_k) \in F$ d'après la relation de Bézout et la stabilité de F donc $F_Q \subset F$ et $P_i \in F_Q$ puisque Q divise P_i d'où $F \subset F_Q$ et $F = F_Q$.

Exercice 25.

Tout polynôme à coefficients complexes non constant est surjectif sur $\mathbb C$ donc $P(\mathbb C) \subset \mathbb R \Leftrightarrow P=a$ (constante réelle).

On a par interpolation de Lagrange : $P(\mathbb{Q}) \subset \mathbb{Q} \Leftrightarrow P \in \mathbb{Q}[X]$.

Montrons que $P(\mathbb{Q}) = \mathbb{Q} \Leftrightarrow P = aX + b$ avec $a \in \mathbb{Q}^*$, $b \in \mathbb{Q}$: la condition est clairement suffisante. Pour prouver qu'elle est nécessaire, considérons un polynôme éventuel P de degré $n \geqslant 2$ tel que $P(\mathbb{Q}) = \mathbb{Q}$. On sait déjà que P est à coefficients rationnels, soit : $P = \frac{1}{d}(a_0 + a_1X + \ldots + a_nX^n)$ avec $a_i \in \mathbb{Z}$, $a_n \neq 0$ et $d \in \mathbb{N}^*$. Soit π un nombre premier ne divisant ni a_n ni d, et x = p/q (forme irréductible) un rationnel tel que $P(x) = 1/\pi$. On a donc : $\pi(a_0q^n + \ldots + a_np^n) = dq^n$ ce qui implique que π divise q. Il vient alors : $a_n p^n = dq^n/\pi - a_0 q^n - \dots - a_{n-1} q p^{n-1}$ ce qui est impossible puisque π est facteur du second membre $(n \ge 2)$ mais pas du premier $(p \land q = 1)$.

Exercice 26.

Clairement $E = \emptyset$ si les y_i ne sont pas distincts. Si y_1, \ldots, y_n sont distincts, soit $P \in E$, $n = \deg(P)$ et λ le coefficient dominant de P ($P \neq 0$ car $P^{-1}(\{y_i\})$ est un singleton). Alors $P(X) - y_i$ a pour seule racine x_i donc $P(X) - y_i = \lambda (X - x_i)^n$. Pour n = 1 on obtient $P(X) = y_1 + \lambda (X - x_1)$ avec $\lambda \in \mathbb{C}^*$. Pour $n \ge 2$ on obtient $y_2 - y_1 = \lambda (X - x_1)^n - \lambda (X - x_2)^n = n\lambda X^{n-1}(x_2 - x_1) + \dots$ ce qui est impossible donc $E = \emptyset$.

Exercice 27.

- 1) Récurrence sur card(S) en mettant le terme de plus bas degré en facteur et en dérivant le quotient.
- 2) Appliquer la question précédente aux suites $(\Re(a_s))$ et $(\Im(a_s))$.

Exercice 28.

Soit $f(x) = \sum_{k=1}^{100} \frac{k}{x-k}$. f est strictement décroissante de 0 à $-\infty$ sur $]-\infty,0[$, de $+\infty$ à $-\infty$ sur chaque intervalle]k,k+1[, $1\leqslant k\leqslant 100$ et de $+\infty$ à 0 sur $]100,+\infty[$. Donc il existe des réels $\alpha_1,\ldots,\alpha_{100}$ avec $1<\alpha_1<2<\alpha_2<\ldots<\alpha_{99}<100<\alpha_{100}$ tels que $E=\{x\in\mathbb{R}\ \mathrm{tq}\ f(x)\geqslant 1\}=\bigcup_{k=1}^{100}[k,\alpha_k]$. La somme des longueurs est $L=\sum_{k=1}^{100}\alpha_k-\sum_{k=1}^{100}k$ et $\alpha_1,\ldots,\alpha_{100}$ sont les racines du polynôme :

$$P(X) = \prod_{k=1}^{100} (X - k) - \sum_{k=1}^{100} k \prod_{i \neq k} (X - i) = X^{100} - 2X^{99} \sum_{k=1}^{100} k + \dots$$

D'où $\sum_{k=1}^{100} \alpha_k = 2 \sum_{k=1}^{100} k$ et $L = \sum_{k=1}^{100} k = 5050$.

Exercice 29.

Le sens \Leftarrow est trivial. Pour le sens \Rightarrow , il suffit de vérifier la propriété lorsque P est irréductible, strictement positif sur \mathbb{R}^+ , et le seul cas non trivial est celui où P est de la forme : $P = (X - a)^2 + b^2$ avec a > 0, b > 0. Dans ce cas, le coefficient de X^k dans $(X + 1)^\ell P(X)$ est : $\binom{\ell}{k} (a^2 + b^2) - 2a \binom{\ell}{k-1} + \binom{\ell}{k-2}$, en convenant que $\binom{x}{y}$ vaut 0 si l'on n'a pas $0 \leqslant y \leqslant x$. En mettant ce qui peut l'être en facteur et en ordonnant le reste suivant les puissances de k, on est rammené à montrer que la quantité :

$$k^{2}(a^{2}+b^{2}+2a+1)-k((a^{2}+b^{2})(2\ell+3)+2a(\ell+2)+1)+\ell^{2}(a^{2}+b^{2})$$

est strictement positive pour tout $k \in [0, \ell + 2]$ si ℓ est choisi convenablement. Or le discriminant par rapport à k est équivalent à $-4\ell^2(2a+1)$ lorsque ℓ tend vers $+\infty$ donc un tel choix de ℓ est possible.

Exercice 30.

On suppose E fini et on montre que P est constant : en supposant $\check{c} \neq 0$, il existe $a \in \mathbb{Z}$ tel que $P(a) \neq 0$. Soit $N = \prod_{p \in E} p^{1+v_p(P(a))}$. Alors pour tout $k \in \mathbb{Z}$, $P(a+kN) \equiv P(a) \pmod{N}$ (formule de Taylor), donc $v_p(P(a+kN)) = v_p(P(a))$ pour tous $k \in \mathbb{Z}$ et $p \in E$. Comme P(a+kN) est produit d'éléments de E, on en déduit que $P(a+kN) = \pm P(a)$ pour tout k, donc P prend une infinité de fois la même valeur.

Exercice 31.

Prendre pour P_n la partie régulière du développement limité à l'ordre n de $\sqrt{1+x}$.

Exercice 32.

Analyse : on pose $P_j = a_0 + a_1 X + \ldots + a_n X^n$ et on considère la fraction rationnelle

$$F(X) = \frac{a_0}{X} + \frac{a_1}{X+1} + \ldots + \frac{a_n}{X+n} = \frac{P(X)}{X(X+1)\ldots(X+n)}.$$

Alors $\int_{t=0}^{1} t^{i} P_{j}(t) dt = F(i+1) = \frac{i! P(i+1)}{(i+n+1)!} donc P(j+1) = \frac{(j+n+1)!}{j!}$ et P(k) = 0 pour tout $k \in [1, n+1] \setminus \{j+1\}$, soit

$$P(X) = \frac{(j+n+1)!}{j!} \prod_{k \neq j+1} \frac{X-k}{j+1-k} = (-1)^{n-j} \frac{(j+n+1)!}{(j!)^2(n-j)!} \prod_{k \neq j+1} (X-k) = Q_j(X).$$

Synthèse : soit Q_j le polynôme ci-dessus et a_0, \ldots, a_n les coefficients de la décomposition en éléments simples de $\frac{Q_j(X)}{X(X+1)\ldots(X+n)}$. On doit juste vérifier que les a_i sont entiers. Calcul :

$$a_{i} = \frac{Q_{j}(-i)}{(-1)^{i}i!(n-i)!}$$

$$= (-1)^{i+j} \frac{(i+j)!(i+n+1)!(j+n+1)!}{(i+j+1)!(i!)^{2}(j!)^{2}(n-i)!(n-j)!}$$

$$= (-1)^{i+j} \binom{i+j}{i} \binom{i+n+1}{i+j+1} \binom{j+n+1}{j} \binom{n}{i}(n+1)$$

$$\in \mathbb{Z}.$$